Generative Agents: Interactive Simulacra of Human Behavior

Generative Agents: Interactive Simulacra of Human Behavior

October 29-November 1, 2023 | Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, Michael S. Bernstein
Generative agents are believable simulacra of human behavior for interactive applications. This paper introduces generative agents, which are computational software agents that simulate believable human behavior. These agents wake up, cook breakfast, and head to work; artists paint, while they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty-five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors. For example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture—observation, planning, and reflection—each contribute critically to the believability of agent behavior. By fusing large language models with computational interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior. The paper also discusses the opportunities and ethical and societal risks of generative agents in interactive systems. We argue that these agents should be tuned to mitigate the risk of users forming parasocial relationships, logged to mitigate risks stemming from deepfakes and tailored persuasion, and applied in ways that complement rather than replace human stakeholders in design processes.Generative agents are believable simulacra of human behavior for interactive applications. This paper introduces generative agents, which are computational software agents that simulate believable human behavior. These agents wake up, cook breakfast, and head to work; artists paint, while they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty-five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors. For example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture—observation, planning, and reflection—each contribute critically to the believability of agent behavior. By fusing large language models with computational interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior. The paper also discusses the opportunities and ethical and societal risks of generative agents in interactive systems. We argue that these agents should be tuned to mitigate the risk of users forming parasocial relationships, logged to mitigate risks stemming from deepfakes and tailored persuasion, and applied in ways that complement rather than replace human stakeholders in design processes.
Reach us at info@study.space
[slides and audio] Generative Agents%3A Interactive Simulacra of Human Behavior