This review article discusses neutrino mass and mixing, focusing on discrete family symmetry in model building. It begins with an overview of neutrino physics, then explores the PMNS mixing matrix and recent global fits from Daya Bay and RENO experiments. The article describes simple mixing patterns like bimaximal, tri-bimaximal, and golden ratio, and the deviations needed for a non-zero reactor angle. It reviews various see-saw mechanisms and the sequential dominance mechanism. The article also covers finite group theory, which can be used to describe discrete family symmetries. It discusses both direct and indirect model building approaches, and how they can generate the reactor angle. The review also touches on grand unified theories (GUTs) and their combination with discrete family symmetry. Finally, it presents three model examples combining SU(5) GUT with discrete family symmetries A4, S4, and Δ(96). The article concludes with a summary of the current state of neutrino physics and the challenges ahead.This review article discusses neutrino mass and mixing, focusing on discrete family symmetry in model building. It begins with an overview of neutrino physics, then explores the PMNS mixing matrix and recent global fits from Daya Bay and RENO experiments. The article describes simple mixing patterns like bimaximal, tri-bimaximal, and golden ratio, and the deviations needed for a non-zero reactor angle. It reviews various see-saw mechanisms and the sequential dominance mechanism. The article also covers finite group theory, which can be used to describe discrete family symmetries. It discusses both direct and indirect model building approaches, and how they can generate the reactor angle. The review also touches on grand unified theories (GUTs) and their combination with discrete family symmetry. Finally, it presents three model examples combining SU(5) GUT with discrete family symmetries A4, S4, and Δ(96). The article concludes with a summary of the current state of neutrino physics and the challenges ahead.